10. Noise & Nonlinear Distortion

Noise in Microwave Circuit

Noise Type

Internal Noise

Category Concept
Thermal Noise 热量产生的噪声,常出现在电阻中
Flicker Noise 固态组件中的噪声
Shot Noise 载流子波动引起的噪声
Plasma Noise 离子气体中的电荷移动产生的噪声
Quantum Noise 量子层面可以忽略的噪声

External Noise

Category Concept
Thermal
Lightning
Microwave Devices

Noise Power & Equivalent Noise Temperature

Thermal Noise in Resistor

  • 使用Rayleigh-Jeans Approximation

$$ \begin{gather} \begin{aligned} V_n &= \sqrt{ \frac{ 4hfBR }{ e^{hf/kT} - 1} } \\ hf &\ll kT \Longrightarrow e^{hf/kT} - 1 \approx hf/kT \\ \therefore V_n &\approx \sqrt{ 4kTBR } \end{aligned} \end{gather} $$

Noise Power

  • 计算传递到Load上的噪声能量

$$ \begin{gather} \begin{aligned} P_n &= ( \frac{ V_n }{ 2R })^2 R = kTB \\ \underset{ B \longrightarrow 0}{ lim } P_n &= 0 \\ \underset{ T \longrightarrow 0}{ lim } P_n &= 0 \\ \underset{ B \longrightarrow \infin }{ lim } P_n &= ? \end{aligned} \end{gather} $$

  • 当$B \longrightarrow \infin$或者$T \longrightarrow \infin$, $V_n$必须使用原公式计算

Equivalent Noise Temperature

  1. Definition

  • 对于产生White Noise的设备,其噪声都可以等效成等效噪声温度下的电阻

$$ \begin{gather} \begin{aligned} T_e &= \frac{ N_o }{ kB } \end{aligned} \end{gather} $$

  1. Equivalent Noise Temperature for a Noisy Amplifier

$$ \begin{gather} \begin{aligned} T_e &= \frac{ N_o }{ GkB } \end{aligned} \end{gather} $$

Excess Noise Ratio

  • 对于一个分离设备而言

$$ \begin{gather} \begin{aligned} ENR(dB) &= 10 lg( \frac{ N_g - N_o }{ N_o }) \\ &= 10 lg( \frac{ T_g - T_o }{ T_o }) \end{aligned} \end{gather} $$

  • 以上定义在一个系统中可能有所不同

Measurement of Noise Temperature (Y-Factor Method)

  • 只有在$T_1 \gg T_2$时,该方法才是适用的

$$ \begin{gather} \begin{aligned} N_1 &= GkB(T_1 + T_e) \\ N_2 &= GkB(T_2 + T_e) \\ Y &= \frac{ N_1 }{ N_2 } \\ &= \frac{ T_1 + T_e }{ T_2 + T_e } > 1\\ \therefore T_e &= \frac{ T-1 - YT_2 }{ Y -1 } \end{aligned} \end{gather} $$

Noise Figure

Definition

在阻抗匹配,且温度$T = 290K$的情况下输入信噪比和输出信噪比的比值

$$ \begin{gather} \begin{aligned} F &= \frac{ S_i/N_i }{ S_o/N_o } \\ \end{aligned} \end{gather} $$

Noise Figure in Impedance Matched Cases

NF of a common 2-Port Network

$$ \begin{gather} \begin{aligned} N_i &= kT_0B \\ N_o &= GkB(T_0 + T_e) \\ S_o &= GS_i \\ F &= 1 + \frac{ T_e }{ T_0 } \ge 1 \\ T_e &= T_0(F-1) \end{aligned} \end{gather} $$

NF of a Lossy Line / Attenuator

  • 定义Lossy Factor $L = \dfrac{ 1 }{ G }$

$$ \begin{gather} \begin{aligned} N_o &= kTB \\ &= GkTB + GN_{line} \\ \therefore N_{line} &= \frac{ 1 - G }{ G } kT B \\ \therefore T_e &= \frac{ N_{line} }{ kB } \\ &= \frac{ 1 - G }{ G } T \\ &= (L-1) T \\ F_{line} &= 1 + \frac{ (L-1) T }{ T_0 } \end{aligned} \end{gather} $$

  • 当$T = T_0$时, $F_{line} = L$

Noise of a Cascaded System

  1. Equivalent Noise Temperature & NF

$$ \begin{gather} \begin{aligned} N_1 &= G_1(N_i + N_{e1}) \\ &= G_1kB(T_0 + T_{e1}) \\ N_2 &= G_2(N_1 + N_{e2}) \\ &= G_1G_2 kB(T_0 + T_{e1}) + G_2 kBT_{e2} \\ &= G_1G_2kB( T_0 + T_{e1} + \frac{ 1 }{ G_1 } T_{e2}) \\ \therefore T_{cas} &= T_{e1} + \frac{ 1 }{ G_1 } T_{e2} \\ F &= F_1 + \frac{ 1 }{ G_1 } (F_2 - 1) \end{aligned} \end{gather} $$

  1. Generalization

$$ \begin{gather} \begin{aligned} T_{cas} &= T_{e1} + \frac{ 1 }{ G_1} T_{e2} + \frac{ 1 }{ G_1 G_2 } T_{e3} + … \\ F &= F_1 + \frac{ 1 }{ G_1 } (F_2 - 1) + \frac{ 1 }{ G_1G_2 } (F_3 -1) + … \end{aligned} \end{gather} $$

Noise Figure in Mismatched Cases

  • Lossy Factor $L$ 是能量损失

$$ \begin{gather} \begin{aligned} S &= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{ e^{-j \beta l} }{ \sqrt{ L } } \\ \therefore \Gamma_{out} &= S_{22} + \frac{ S_{12} S_{21} \Gamma_S}{ 1 - S_{11} \Gamma_S} \\ &= \frac{ \Gamma_S }{ L }e^{-2j \beta l} \\ \therefore G_{21} &= \frac{ |S_{21}|^2 ( 1- | \Gamma_S|^2) }{ |1 - S_{11} \Gamma_S|^2 ( 1- | \Gamma_{out}|^2)} \\ &= \frac{ L ( 1 - | \Gamma_S|^2) }{ L^2 - | \Gamma_S|^2 } \\ T_e &= \frac{ 1 -G_{21} }{ G_{21} } T \\ &= \frac{ (L-1)(L + | \Gamma_S|^2) }{ L ( 1 - | \Gamma_S|^2) } T \end{aligned} \end{gather} $$

Noise Figure for a Mismatched Amplifier

$$ \begin{gather} \begin{aligned} N_o &= kT_0 GB( 1 - | \Gamma|^2) + kT_0 ( F - 1) GB \end{aligned} \end{gather} $$

Nonlinear Distortion

Causes & Output Signal

Category Concept
Harmonic Generation $n \omega_0$信号
Intermodulation 交调信号
Saturation 饱和后的非线性
Cross-Medulation 两个信号互相调制
AM-PM Conversion 幅度变化引起相位失真
Spectral Regrowth 很多不同信号之间的调制

  • 对输出信号进行Taylor’s Series展开

$$ \begin{gather} \begin{aligned} v_o &= a_0 + a_1 v_i + a_2 v_i^2 + … \\ a_0 &= v_o(0) & DC \\ a_1 &= \frac{ dV_o(0) }{ dt } & Linear \ Output \\ a_2 &= \frac{ dV^2(0) }{ dt^2 } & Squared \ Output \end{aligned} \end{gather} $$

Gain Compression

Output Voltage Expressions

$$ \begin{gather} \begin{aligned} v_o &= a_0 + a_1 V_0 \cos ( \omega_0 t) + a_2 V_0^2 cos^2( \omega_0 t) + a_3 V_0^3cos^3( \omega_0 t) \\ &= (a_0 + \frac{ 1 }{ 2 } a_2 V_0^2) + (a_1V_0 + \frac{ 3 }{ 4 } a_3 V_0^3) \cos(\omega_0 t) + \frac{ 1 }{ 2 } a_2V_0^2 cos(2 \omega_0 t) + \frac{ 1 }{ 4 } a_3V_0^3 cos(3 \omega_0 t) \end{aligned} \end{gather} $$

Gain at Center Frequency

$$ \begin{gather} \begin{aligned} G_v &= \frac{ v_o^{( \omega_0)} }{ v_i^{( \omega_0)} } \\ &= \frac{ a_1 V_0 + \frac{ 3 }{ 4 } a_3 V_0^3 }{ V_0 } \\ &= a_1 + \frac{ 3 }{ 4 } a_3 V_0^3 \end{aligned} \end{gather} $$

1dB Compression Point

$$ \begin{gather} \begin{aligned} OP_{1dB} &= IP_{1dB} + G - 1dB \end{aligned} \end{gather} $$

Harmonic & Intermodulation Distortion

Analysis of Two-Tone Input Signal

  1. 公式推导

$$ \begin{gather} \begin{aligned} v_i &= V_0 \Big[ \cos ( \omega_1 t) + cos ( \omega_2 t)\Big] \\ v_o &= a_0 + a_1 V_0 ( \cos ( \omega_1 t) + \cos ( \omega_2 t)) + a_2 V_0^2 ( \cos \omega_1 t + \cos( \omega_2 t))^2 \\ & + a_3 V_0^3(\cos ( \omega_1 t) + \cos( \omega_2 t))^3 + …\\ &= \Big[ a_0 + a_2 V_0^2 \Big] \\ &+ \Big[ a_1V_0 + \frac{ 9 }{ 4 } a_3 V_0^3 \Big] \cos( \omega_1 t) + \Big[ a_1 V_0 + \frac{ 9 }{ 4 } a_3 V_0^3 \Big] \cos ( \omega_2 t) \\ & + \frac{ 1 }{ 2 } a_2 V_0^2cos(2 \omega_1 t) + \frac{ 1 }{ 2 } a_2V_0^2 \cos( 2 \omega_2 t) \\ &+ a_2 V_0^2 \cos \Big[ ( \omega_1 - \omega_2) t\Big] + a_2V_0^2 \cos \Big[ ( \omega_1 + \omega_2) t\Big] \\ &+ \frac{ 1 }{ 4 } a_3V_0^3 \cos( 3 \omega_1 t) + \frac{ 1 }{ 4 } a_3V_0^3 \cos( 3 \omega_2 t) \\ &+ \frac{ 3 }{ 4 } a_3 V_0^3 \Big[ \cos(2 \omega_1 - \omega_2) t \Big] + \frac{ 3 }{ 4 } a_3 V_0^3 \Big[ \cos(2 \omega_1 + \omega_2) t \Big] \\ &+ \frac{ 3 }{ 4 } a_3 V_0^3 \Big[ \cos(2 \omega_2 - \omega_1) t \Big] + \frac{ 3 }{ 4 } a_3 V_0^3 \Big[ \cos(2 \omega_2 + \omega_1) t \Big] \end{aligned} \end{gather} $$

  1. 频率分布

Third-Order Intercept Point

  1. $OIP_3$求解
  • $P_{\omega_1}$指的是$\omega_1$(Desired Frequency)处的功率

$$ \begin{gather} \begin{aligned} P_{ \omega_1} &\approx \frac{ 1 }{ 2 } a_1^2 V_0^2 \\ P_{2 \omega_1 - \omega_2} &= \frac{ 1 }{ 2 } ( \frac{ 3 }{ 4 }a_3 V_0^3 )^2 \\ &= \frac{ 9 }{ 32 } a_3^2 V_0^6 \\ P_{ \omega_1} &= P_{2 \omega_1 - \omega_2} \\ \therefore V_{IP} &= \sqrt{ \frac{ 4a_1 }{ 3a_3 } } \\ \therefore OIP_3 &= \frac{ 2a_1^3 }{ 3a_3 } \end{aligned} \end{gather} $$

Intercept Point of a Cascaded System

$$ \begin{gather} \begin{aligned} P’{2\omega_1 - \omega_2} &= \frac{ P{ \omega_1}’^3 }{ (OIP_3’)^2 } \\ \therefore V’{2 \omega_1 - \omega_2}&= \sqrt{ P’{2 \omega_1 - \omega_2} Z_0 } \\ &= \frac{ \sqrt{ P_{ \omega_1}’^3 \cdot Z_0 } }{ OIP_3’ } \\ V’’{2 \omega_1 - \omega_2} &= \sqrt{ G_2 } V’{2 \omega_1 - \omega_2} + \frac{ \sqrt{ P_{ \omega_1}’^3 \cdot Z_0 } }{ OIP_3’ } \\ P_{2 \omega_1 - \omega_2}’’&= \Big[ \frac{ 1 }{ G_2 (OIP_3’) } + \frac{ 1 }{ OIP_3’’ } \Big]^2 P_{ \omega_1}’’^3 \\ &= \frac{ (P_{ \omega_1}’’)^3 }{ (OIP_3’’)^2 } \end{aligned} \end{gather} $$

  • Intercept Point of a Cascaded System

$$ \begin{gather} \begin{aligned} OIP_3 = \begin{cases} \Big[ \dfrac{ 1 }{ G_2 (OIP_3’) } + \dfrac{ 1 }{ OIP_3’’ } \Big]^{-1} & Coherent \\ \Big[ \dfrac{ 1 }{ (G_2 (OIP_3’))^2 } + \dfrac{ 1 }{ (OIP_3’’)^2} \Big]^{-1/2} & Incoherent \end{cases}
\end{aligned} \end{gather} $$

Dynamic Range

Linear Dynamic Range

$$ \begin{gather} \begin{aligned} LDR(dB) &= OP_{1dB} - N_o \end{aligned} \end{gather} $$

Spurious-Free Dynamic Range

$$ \begin{gather} \begin{aligned} SFDR &= \frac{ P_{ \omega_1} }{ P_{2 \omega_1 - \omega_2} } \\ &= \Big( \dfrac{ OIP_3 }{ N_o } \Big)^{2/3} \\ SFDR(dB) &= \frac{ 2 }{ 3 } (OIP_3 - N_o) \end{aligned} \end{gather} $$

Licensed under CC BY-NC-SA 4.0
comments powered by Disqus
Built with Hugo
Theme Stack designed by Jimmy