12A Microwave Amplifier

Two-Port Power Gain

Difinition

3 Gains

$$ \begin{gather} \begin{aligned} Power \ Gain \ G_p &= \frac{ P_{L} }{ P_{in} } \\ Avaiable \ Gain \ G_A &= \frac{ P_{out} }{ P_{S} } \\ Transducer \ Gain \ G_T &= \frac{ P_L }{ P_S } \end{aligned} \end{gather} $$

Circuit Analysis

Reflection Coefficients

  1. $\Gamma_L$ 与 $\Gamma_{out}$, $\Gamma_{in}$与$\Gamma_{S}$

$$ \begin{gather} \begin{aligned} \Gamma_L &= \frac{ Z_L - Z_0 }{ Z_L + Z_0 } = \frac{ V_2^+ }{ V_2^- } = \frac{ 1 }{ \Gamma_{out} } \\ \Gamma_S &= \frac{ Z_S - Z_0 }{ Z_S + Z_0 } = \frac{ V_1^+ }{ V_1^- } = \frac{ 1 }{ \Gamma_{in} } \end{aligned} \end{gather} $$

  1. $\Gamma_L$ 与 $\Gamma_{in}$

$$ \begin{gather} \begin{aligned} V_1^- &= S_{11} V_1^+ + S_{12} V_2^+ = S_{11} V_1^+ S_{12} \Gamma_L V_2^- \\ V_2^- &= S_{22} V_2^+ + S_{21} V_1^+ = S_{21} V_1^+ + S_{22} \Gamma_L V_2^- \\ \therefore V_2^- &= \frac{ S_{21} V_1^+ }{ 1 - S_{22} \Gamma_L } \\ V_1^- &= (S_{11} + \frac{ S_{12} S_{21} \Gamma_L }{ 1 - S_{22} \Gamma_L }) V_1^+ \\ \therefore \Gamma_{in} &= S_{11} + \frac{ S_{12} S_{21} \Gamma_L }{ 1 -S_{22} \Gamma_L } \end{aligned} \end{gather} $$

  1. $\Gamma_S$ 与 $\Gamma_{out}$, 同理可得

$$ \begin{gather} \begin{aligned} \Gamma_{out} &= S_{22} + \frac{ S_{12} S_{21} \Gamma_S}{ 1- S_{11} \Gamma_S} \end{aligned} \end{gather} $$

Powers

  1. $V_1^+$ 和 $V_S$

$$ \begin{gather} \begin{aligned} V_1 &= \frac{ Z_{in} }{ Z_{in} + Z_S } V_S \\ &= V_1^+(1 + \Gamma_{in}) \\ Z_{in} &= Z_0 \frac{ 1 + \Gamma_{in} }{ 1 - \Gamma_{in} } \\ \therefore V_1^+ &= \frac{ V_S }{ 2 } \frac{ 1 - \Gamma_S }{ 1 - \Gamma_S \Gamma_{in} } \\ \end{aligned} \end{gather} $$

  1. Powers
  • $P_{in}$

$$ \begin{gather} \begin{aligned} P_{in} &= \frac{ |V_1|^2 }{ 2Z_{in} } \\ &= \frac{ |V_1^+|^2 }{ 2 Z_0 } (1- |\Gamma_{in}|^2) \\ &= \frac{ |V_s|^2 }{ 8 Z_0 } \frac{ (1- \Gamma_S)^2 ( 1- | \Gamma_{in}|^2) }{ (1 - \Gamma_S \Gamma_{in})^2 } \end{aligned} \end{gather} $$

  • 利用$V_2^- = \dfrac{ S_{21} }{ 1 - S_{22} \Gamma_L } V_1^+$获取$P_L$

$$ \begin{gather} \begin{aligned} P_L &= \frac{ |V_2^-|^2 }{ 2Z_0 } (1 - | \Gamma_L|^2) \\ &= \frac{ |V_s|^2 }{ 8 Z_0 } \frac{ (1- \Gamma_S)^2 ( 1- | \Gamma_{L}|^2) }{ (1 - \Gamma_S \Gamma_{in})^2 } \frac{ |S_{21}|^2 }{ (1 - S_{22} \Gamma_L)^2 } \end{aligned} \end{gather} $$

  • $P_{avs}$, 即Maximum Power Avaiable from the source, 阻抗匹配时的功率

$$ \begin{gather} \begin{aligned} P_{avs} &= P_{in} ({\Gamma_{in} = \Gamma_S^*}) = \frac{ |V_S|^2 }{ 8Z_0 } \frac{ (1- \Gamma_S)^2 }{ (1- |\Gamma_S|^2) } \end{aligned} \end{gather} $$

  • $P_{avn}$

$$ \begin{gather} \begin{aligned} P_{avn} &= P_L ({\Gamma_{out} = \Gamma_L^*}) = \frac{ |V_S|^2 }{ 8Z_0 } \frac{ (1- \Gamma_S)^2 }{ (1- |\Gamma_{out}|^2) } \frac{ |S_{21}|^2 }{ |1 - S_{11} \Gamma_S|^2 } \end{aligned} \end{gather} $$

Gains

  • $G_{TU}$是Unilateral Gain, 此时, $S_{12} = 0 \Longrightarrow \Gamma_{in} = S_{11}$

$$ \begin{gather} \begin{aligned} G_P &= \frac{ P_L }{ P_{in} } = \frac{ |S_{21}|^2 ( 1- | \Gamma_L|^2) }{ (1 - S_{22} \Gamma_L)^2 (1 - | \Gamma_{in}|^2) } \\ G_A &= \frac{ P_{out} }{ P_{avs} } = \frac{ |S_{21}|^2 ( 1- | \Gamma_S|^2) }{ (1 - S_{11} \Gamma_S)^2 (1 - | \Gamma_{out}|^2) } \\ G_T &= \frac{ P_{out} }{ P_{in} } = \frac{ |S_{21}|^2 ( 1- | \Gamma_S|^2) ( 1- | \Gamma_L|^2) }{ | 1 - \Gamma_S \Gamma_{in}|^2| 1 - S_{22} \Gamma_L|^2 } \\ G_{TU} &= \frac{ P_{out} }{ P_{in} } = \frac{ |S_{21}|^2 ( 1- | \Gamma_S|^2) ( 1- | \Gamma_L|^2) }{ | 1 - \Gamma_S S_{11}|^2| 1 - S_{22} \Gamma_L|^2 } \\ \end{aligned} \end{gather} $$

2-Port Power Gain in a Amplifier Model

$$ \begin{gather} \begin{aligned} G_T &= G_S G_0 G_L \\ G_S &= \frac{ 1 - | \Gamma_S|^2 }{ |1 - \Gamma_S S_{11}|^2 } \\ G_0 &= |S_{21}|^2 \\ G_L &= \frac{ 1 - | \Gamma_L|^2 }{ | 1 - S_{22} \Gamma_L|^2} \end{aligned} \end{gather} $$

Stability

Definition

$$ \begin{gather} \begin{aligned} \mathcal{Re} \lbrace Z_{in} \rbrace \ge 0 \\ |Z_0 \frac{ 1 - \Gamma_{in} }{ 1 + \Gamma_{in} }| \ge 0 \\ \therefore | \Gamma_{in}| < 1 \\ | \Gamma_{out}| < 1 \end{aligned} \end{gather} $$

Category Concept
Unconditionally Stbale 在任何情况下$|\Gamma_{in}| < 1. |\Gamma_{out}| < 1$
Conditionally Stbale 在特定频段、温度下$|\Gamma_{in}| < 1. |\Gamma_{out}| < 1$

Stability Circle

Input Stability Circle

  • 将$\Gamma_{in}, \Gamma_{out}$的表达式代入$(12)$, 得到

$$ \begin{gather} \begin{aligned} | \Gamma_L - \frac{ (S_{22} - \Delta S_{11}’)’ }{ |S_{22} - | \Delta|^2 } | &= | \frac{ S_{12} S_{21} }{ |S_{22}|^2 - | \Delta|^2 } | \\ C_L &= \frac{ (S_{22} - \Delta S_{11}’)’ }{ |S_{22} - | \Delta|^2} \\ R_L &= | \frac{ S_{12} S_{21} }{ |S_{22}|^2 - | \Delta|^2 } | \end{aligned} \end{gather} $$

Output Stability Circle

  1. 同理可得

$$ \begin{gather} \begin{aligned} | \Gamma_S - \frac{ (S_{11} - \Delta S_{22}’)’ }{ |S_{11} - | \Delta|^2 } | &= | \frac{ S_{12} S_{21} }{ |S_{11}|^2 - | \Delta|^2 } | \\ C_L &= \frac{ (S_{11} - \Delta S_{22}’)’ }{ |S_{11} - | \Delta|^2} \\ R_L &= | \frac{ S_{12} S_{21} }{ |S_{11}|^2 - | \Delta|^2 } | \end{aligned} \end{gather} $$

  1. Output Stability Circles

Test for Unconditionally Stable

Rollet Condition

  1. S参数

$$ \begin{gather} \begin{aligned} K &= \frac{ 1 - |S_{11}|^2 - |S_{22}|^2 + | \Delta|^2 }{ 2 |S_{12} S_{21}| } > 1 \\ |\Delta| &< 1 \end{aligned} \end{gather} $$

  1. 导抗参数

$$ \begin{gather} \begin{aligned} K &= \frac{ 2 \mathcal{Re} (W_{11})\mathcal{Re} ( W_{22}) - \mathcal{Re} ( W_{12} W_{21})}{ | W_{12} W_{21} |} \end{aligned} \end{gather} $$

mu Test

$$ \begin{gather} \begin{aligned} \mu = \frac{ 1 - |S_{11}|^2 }{ |S_{22} - \Delta S_{11}’| + |S_{12} S_{21}| } > 1 \end{aligned} \end{gather} $$

Potential Unstable Factors for MOSFET

Inner Feedback Capacitance

Y Parameter

$$ \begin{gather} \begin{aligned} [Y] &= \begin{bmatrix} j \omega C_{gd} + \dfrac{ j \omega C_{gs} }{ 1 + j \omega R_{gs} C_{gs} }& - j \omega C_{gd} \\ \dfrac{ g_m }{ 1 + j \omega R_{gs} C_{gs} } - j \omega C_{gd} & \dfrac{ 1 }{ R_{ds} } + j \omega ( C_{ds} + C_{gd}) \\ \end{bmatrix} \\ Y_{in} &= \frac{ j \omega C_{gs} }{ 1 + j \omega R_{gs} C_{gs} } \Big[ 1 + g_m R_{ds} \frac{ 1 - j \dfrac{ \omega }{ \omega_T } ( 1 + j \omega R_{gs} C_{gs}) }{ 1 + j \omega R_{ds} C_{ds} \Big( 1 + \dfrac{ C_{gd} }{ C_{ds} } + \dfrac{ B_L }{ \omega C_{ds} } \Big)} \Big] \end{aligned} \end{gather} $$

Stability Factor

  • Y参数带入导抗参数表达的$K$中

$$ \begin{gather} \begin{aligned} K &= \Big[ 1 + \frac{ 2 }{ g_m R_{ds} } (1 + \frac{ C_{gs} }{ C_{gd} })\Big] \frac{ \omega R_{gs} C_{gs} }{ \sqrt{ 1 + ( \omega R_{gs} C_{gs})^2 } } \\ \underset{ \omega \longrightarrow \infin }{ lim } K &= \Big[ 1 + \frac{ 2 }{ g_m R_{ds} } (1 + \frac{ C_{gs} }{ C_{gd} })\Big] \\ \underset{ \omega \longrightarrow 0}{ lim } K &= 0 \end{aligned} \end{gather} $$

稳定频带边界

  • Power MOSFET 经验条件: $g_m R_{ds} = \dfrac{ 10 }{ 30 }, \dfrac{ C_{gd} }{ C_{gs} } = \dfrac{ 0.1 }{ 0.2 }$

$$ \begin{gather} \begin{aligned} f_{p1} &\approx \frac{ 10^{-6} }{ 2 \pi R_{gs} C_{gs}} \\ f_{p2} &= \frac{ 1 }{ 4 \pi R_{gs} C_{gs} } \frac{ g_m R_{ds}}{ \sqrt{ 1 + \dfrac{ C_{gs} }{ C_{gd} } }} \frac{ 1 }{ \sqrt{ 1 + \dfrac{ C_{gs} }{ C_{gd} } + g_m R_{ds} } } &\approx \frac{ 1 }{ 4\pi R_{gs} C_{gs} } \end{aligned} \end{gather} $$

Parasitic Source Inductance

  • $\kappa = \dfrac{ \omega_T L_S }{ R_{gs} }$

Single-Stage Amplifier Design

Design for Maximum Gain

Maximum Gain & Max Stable Gain

  • 当$\Gamma_{in} = \Gamma_S^, \Gamma_{out} = \Gamma_L^$时,会出现最大增益

$$ \begin{gather} \begin{aligned} G_{Tmax} &= \frac{ |S_{21}|^2 (1 - | \Gamma_L|^2) }{ (1- | \Gamma_S|^2) (1- S_{22} \Gamma_L)^2 } \\ &= \frac{ |S_{21}| }{ |S_{12}| } ( K - \sqrt{ K^2 - 1 }) \\ G_{msg} &= \frac{ |S_{21}| }{ |S_{12}| }, K = 1 \end{aligned} \end{gather} $$

对应的反射系数

  • 根据反射系数公式,结合共轭匹配,可以得到

$$ \begin{gather} \begin{aligned} \Gamma_S &= \frac{ B_1 \pm \sqrt{ |B_1|^2 - 4|C_1|^2 } }{ 2C_1 } \\ \Gamma_L &= \frac{ B_2 \pm \sqrt{ |B_2|^2 - 4|C_2|^2 } }{ 2C_2 } \\ B_1 &= 1 + |S_{11}|^2 - |S_{22}|^2 - | \Delta|^2 \\ B_2 &= 1 - |S_{11}|^2 + |S_{22}|^2 - | \Delta|^2 \\ C_1 &= S_{11} - \Delta S_{22}^* \\ C_2 &= S_{22} - \Delta S_{11}^* \end{aligned} \end{gather} $$

  • 以上方程只在$K>1$时有解

Gains in Unilateral Case

$$ \begin{gather} \begin{aligned} S_{12} &= 0 \\ \Gamma_{in} &= S_{11}’, \Gamma_{out} = S_{22}’ \\ G_{TUmax} &= \frac{ |S_{21}|^2 }{ (1 - |S_{11}|^2)(1 - |S_{22}|^2) } \end{aligned} \end{gather} $$

Constant Gain Circle & Desgin for Specific Gain

Gain Factor

  1. 当$\Gamma_S = S_{11}^, \Gamma_L = S_{22}^$时,增益取得最大值

$$ \begin{gather} \begin{aligned} G_S &= \frac{ 1 - |\Gamma_s|^2 }{ | 1- S_{11} \Gamma_S|^2 } \\ G_L &= \frac{ 1 - |\Gamma_L|^2 }{ | 1- S_{22} \Gamma_L|^2 } \\ G_{Smax} &= \frac{ 1 }{ 1 - |S_{11}|^2 } \\ G_{Lmax} &= \frac{ 1 }{ 1 - |S_{22}|^2 } \end{aligned} \end{gather} $$

  1. Gain Factor

$$ \begin{gather} \begin{aligned} g_s &= \frac{ G_S }{ G_{S \ max} } \\ g_L &= \frac{ G_L }{ G_{L \ max} } \end{aligned} \end{gather} $$

Constant Gain Circles

$$ \begin{gather} \begin{aligned} C_S &= \frac{ g_s S_{11}^* }{ 1 - (1 - g_s)|S_{11}|^2 } \\ R_S &= \frac{ \sqrt{ 1 - g_s } ( 1 - |S_{11}|^2)}{ 1 - (1 - g_s) |S_{11}|^2 } \\ C_L &= \frac{ g_s S_{22}^* }{ 1 - (1 - g_L)|S_{22}|^2 } \\ R_L &= \frac{ \sqrt{ 1 - g_L } ( 1 - |S_{22}|^2)}{ 1 - (1 - g_L) |S_{22}|^2 } \end{aligned} \end{gather} $$

Low Noise Amplifier Design

Noise Figure Parameter

  1. Noise Figure of a Transistor

$$ \begin{gather} \begin{aligned} F &= F_{min} + \frac{ R_N }{ G_S } |Y_S - Y_{opt}|^2 \end{aligned} \end{gather} $$

Category Concept
$Y_S = G_S + j B_S$ Source Admittance presented to the Transistor
$Y_{opt}$ The one leading to Minimum Noise Figure
$F_{min}$ Minimum Noise Figure of Transistor
$R_N$ Equivalent Resistance of Transistor
  1. Define Noise Figure Parameter

$$ \begin{gather} \begin{aligned} Y_S &= \frac{ 1 }{ Z_S } \frac{ 1 - \Gamma_S }{ 1 + \Gamma_S } \\ Y_{opt} &= \frac{ 1 }{ Z_{opt} } \frac{ 1 - \Gamma_{opt} }{ 1 + \Gamma_{opt} } \\ \therefore F &= F_{min} + \frac{ 4R_N }{ Z_0 } \frac{ | \Gamma_S - \Gamma_{opt}|^2 }{ (1 - | \Gamma_S|^2) | 1 + \Gamma_{opt}|^2 } \\ N &= \frac{ | \Gamma_S - \Gamma_{opt}|^2 }{ 1 - | \Gamma_S|^2 } \\ &= \frac{ F - F_{min} }{ 4R_N/Z_0 } | 1 + \Gamma_{opt}|^2 \\ \end{aligned} \end{gather} $$

  1. Noise Figure Center

$$ \begin{gather} \begin{aligned} | \Gamma_S - C_F| &= |R_F| \\ C_F &= \frac{ \Gamma_{opt} }{ N + 1} \\ R_F &= \frac{ \sqrt{ N(N+1 - | \Gamma_{opt}|^2) } }{ N + 1 } \end{aligned} \end{gather} $$

Low Noise MOSFET Amplifier

Broadband Transistor Amplifier Design

增加带宽的做法

方法 优点 缺点
Compensated Matching Network 补偿Gain 输入、输出阻抗失配
Resistive Matching Network 阻抗匹配 Gain下降,Noise Figure增加
Negative Feedback 增加增益平坦度,阻抗匹配,增加稳定性 Gain 下降,Noise Figure 增加
Balanced Amplifier 带宽大,阻抗匹配 需要更大的面积、更多的晶体管、更大的DC功耗
Distributed Amplifier 大Gain, 阻抗匹配,大带宽,低噪声 面积很大
Differential Amplifier 更大的带宽,更大的Output Voltage Swing 面积更大

Balanced Amplifiers

$$ \begin{gather} \begin{aligned} S_{21} &= - \frac{ j }{ 2 }( G_A + G_B) \\ S_{11} &= \frac{ 1 }{ 2 } ( \Gamma_A - \Gamma_B ) \end{aligned} \end{gather} $$

Distributed Amplifier

Differential Amplifier

Single-Ended & Differential Amplifier (Symbols)

Balun Lines

Differential Amplifier Circuit

Licensed under CC BY-NC-SA 4.0
comments powered by Disqus
Built with Hugo
Theme Stack designed by Jimmy