4. 麦克斯韦电磁理论与电磁波

麦克斯韦电磁理论

位移电流

理清四个概念

Category Concept
电场强度 $E$
电位移矢量(电感应强度) $\pmb D=\varepsilon_0 \pmb E+\pmb P, C/m^2$
磁感应强度 $\pmb B$
磁场强度 $\pmb H = \dfrac{ \pmb B }{ \mu_0 }$

库仑定律+场强叠加定律 可以得到

  1. 电场的高斯定律

$$ \begin{gather} \begin{aligned} \oiint\pmb D\cdot d\pmb S=q_0 \end{aligned} \end{gather} $$

  1. 静电场的环路定律

$$ \begin{gather} \begin{aligned} \oint\pmb E\cdot d\pmb l=0 \end{aligned} \end{gather} $$

Bio-Sarurt定律 可以得到

  1. 磁场的高斯定律

$$ \begin{gather} \begin{aligned} \oiint \pmb B\cdot d\pmb S=0 \end{aligned} \end{gather} $$

  1. 安培环路定律

$$ \begin{gather} \begin{aligned} \oint \pmb H\cdot d\pmb l=I_0 \end{aligned} \end{gather} $$

磁法拉第电磁感应定律 (磁场变化的规律)

$$ \begin{gather} \begin{aligned} \xi =-\frac{\partial \Phi_B}{\partial t} \end{aligned} \end{gather} $$

位移电流的推导

$$ \\ \oint \pmb H \cdot d\pmb l = I_0=\oiint \pmb j_0\cdot d\pmb S=-\frac{dq_0}{dt}\\\ \\ \because \oiint \pmb D\cdot d\pmb S=q_0\Rightarrow \frac{dq_0}{dt}=\oiint \frac{\partial \pmb D}{\partial t}d\pmb S,代入上式\\\ \\ \oiint (\pmb j_0+\frac{\partial \pmb D}{\partial t})d\pmb S=0\Rightarrow \pmb j_0+\frac{\partial \pmb D}{\partial t}是个连续量\\\ \\ 其中,\frac{\partial \pmb \Phi_0}{\partial t}=\iint \frac{\partial \pmb D}{\partial t}\cdot d\pmb S叫做\pmb{位移电流}\\\ \\ \frac{\partial \pmb D}{\partial t}叫做\pmb{位移电流密度}\\\ \\ I_0=\iint \pmb j_0\cdot d\pmb S叫做\pmb{全电流}\\\ \\ 故\oint \pmb H\cdot d\pmb l = I_0 + \frac{\partial \pmb \Phi_D}{\partial t } $$

Category Concept
位移电流 电场变化产生的
传导电流 电荷在导体中移动产生的

麦克斯韦方程组

积分形式

$$ \begin{gather} \begin{aligned} \oiint \pmb D\cdot d\pmb S &= q_0 \\ \oint \pmb E\cdot d\pmb l &= -\iint\frac{\partial \pmb B}{\partial t }\cdot d\pmb S \\ \oiint \pmb B\cdot d\pmb S &= 0 \\ \oint \pmb H\cdot d\pmb l &= I_0+\iint\frac{\partial \pmb D}{\partial t}d\pmb S \end{aligned} \end{gather} $$

  • 穿过一个闭合曲面的唯一电流加一块就是电荷量

  • 电场转一圈 = 磁通量变化率

  • 磁场线闭合,穿完平面又回来了,所以为0

  • 磁场转一圈产生电流和 …

微分形式

$$ \begin{gather} \begin{aligned} \nabla \cdot \pmb D &= \rho_0 \\ \nabla\times\pmb E &= -\frac{d\pmb B}{dt} \\ \nabla \cdot \pmb B &= 0 \\ \nabla \times \pmb H &= \pmb j_0+\frac{\partial \pmb D}{\partial t} \end{aligned} \end{gather} $$

最基本形式

$$ \begin{gather} \begin{aligned} \nabla\cdot \pmb E &= \frac{\rho_0}{\varepsilon_0} \\ \nabla\times\pmb E &= -\frac{d\pmb B}{dt} \\ \nabla \cdot \pmb B &= 0 \\ \nabla\times \pmb B &= \varepsilon_0\mu_0\frac{\partial \pmb E}{\partial t } +\mu_0\pmb j_0 \end{aligned} \end{gather} $$

边界条件(暂定)

电磁波理论

平面电磁波的解

自由空间的麦克斯韦方程

$$ \nabla\cdot \pmb D=0 \\\ \\ \nabla\times \pmb E=-\mu_0\frac{\partial \pmb H}{\partial t}\\\ \\ \nabla\cdot \pmb H=0\\\ \\ \nabla\times\pmb H=\varepsilon_0\frac{\partial \pmb E}{\partial t} $$

  1. 电磁场中的位置关系

$$ \pmb E\perp\pmb B\perp 传播方向\pmb k\\\ \\ $$

平面电磁波的性质

  1. 电磁波是横波

  2. $\pmb E$和$\pmb B$同相位

  3. $\pmb{E\times N}$与传播方向始终同向

  4. $\pmb E$和$\pmb B$的幅值成比例

$$ \varepsilon_0^2E_0=\mu_0^2H_0^2 = B_0^2 $$

  1. 电磁波的速率$v=\frac{1}{\sqrt{\varepsilon_0\mu_0}}=c$

电磁场的能流密度矢量和动量

Licensed under CC BY-NC-SA 4.0
comments powered by Disqus
Built with Hugo
Theme Stack designed by Jimmy