A1 ESD

ADC & DAC

DAC

I/O和解释

$$ \begin{gather} \begin{aligned} V_o &= \frac{ D }{ 2^n } V_r \end{aligned} \end{gather} $$

重要类型 - R-2R Ladder DAC

ADC

I/O和原理

Category Concept
$V_{ref}$ Reference Voltage
Resolution(LSB) $\dfrac{ V_r }{ 2^n }$
SC Start of Conversion
EOC End of Conversion
$D_i$ 数字输入的二进制第$i$位

$$ \begin{gather} \begin{aligned} D &= \frac{ V_i }{ V_r } 2^n \end{aligned} \end{gather} $$

Successive Approximation ADC

总结

$$ \begin{gather} \begin{aligned} 数字输入 \times 分辨率 &= 模拟输出 模拟输入 % 分辨率 &= 数字输出 \end{aligned} \end{gather} $$

Opamp Revision

Imperfection in Opamp

  • Ideal Opamp + Current Sources = Model of a Real Opamp

Bias Current

定义

  • 图中的的放大器是理想的

$$ \begin{gather} \begin{aligned} I_B(+) &\approx I_B(-) \ I_B &= \frac{ I_B(+) + I_B(-) }{ 2 } \end{aligned} \end{gather} $$

以Inverting Configuration 为例介绍非理想时的输出电压

$$ \begin{gather} \begin{aligned} V_o &= - \frac{ V_{in} R_2 }{ R_1 } + I_B R_2 \\ &= -\frac{ V_{in} R_2 }{ R_1 } - I_B R_1 \end{aligned} \end{gather} $$

Category Concept
Refer to Output(RTO) $I_BR_2$
Refer to Input(RTI) $-I_BR_1$
  • 等效电路

Compensation

$$ \begin{gather} \begin{aligned} V_o &= -V_{in} + R(I_B(-) - I_B(+)) \\ &= -V_{in} + RI_{os} \end{aligned} \end{gather} $$

Input Offset Current

Definition

$$ \begin{gather} \begin{aligned} I_{os} &= |I_B(+) - I_B(-)| \end{aligned} \end{gather} $$

用Bias 和 Offset Current 来表示电流

$$ \begin{gather} \begin{aligned} I_B(+) &= \frac{ I_{os} }{ 2 } + I_B \\ I_B(-) &= - \frac{ I_{os} }{ 2 } + I_B \end{aligned} \end{gather} $$

Ex. Integrator

$$ \begin{gather} \begin{aligned} V_{out} &= \end{aligned} \end{gather} $$

Figure of Merit

Ex.1 - Integrate and Hold

电路

$S_1$接$V_{in}$时 Integrator

$$ \begin{gather} \begin{aligned} V_{out} &= - \int_{}^{ } \frac{ V_{in} }{ RC }dt \end{aligned} \end{gather} $$

$S_1$接地时 Memory

$$ \begin{gather} \begin{aligned} V_{out} &= Constant \\ | \frac{ dV_{out} }{ dt }| &= \frac{ 1 }{ C } \frac{ dQ }{ dt } \\ &= \frac{ 1 }{ C } (I_B + \frac{ V_{os} }{ R }) \\ &= \frac{ 1 }{ \tau } (V_{os} + I_BR) \end{aligned} \end{gather} $$

  • 为了使得$| \dfrac{ dV_{out} }{ dt}|$尽可能小; $V_{out}$不变时,$V_{in}$ 尽可能大

$$ \begin{gather} \begin{aligned} R \ge 2 k \Omega \end{aligned} \end{gather} $$

Figure of Merit

$$ \begin{gather} \begin{aligned} F &= V_{os} + I_{os} R \end{aligned} \end{gather} $$

Ex.2 - Differential Amplifier

$$ \begin{gather} \begin{aligned} V_{out} &= 2 V_{os} + 20k \cdot I_{os} \\ F &= 2 V_{os} + 20k \cdot I_{os} \end{aligned} \end{gather} $$

Grounding & Common-Mode Rejection

Power Dissipation Capacitance for CMOS Logic Current

$$ \begin{gather} \begin{aligned} C_{PD} &= \frac{ Q_{switch} }{ V_{CC} } \\ &= \frac{ I_{max} \tau_{switch} }{ V_{CC} } \\ &= \frac{ \tau_{switch} }{ R_{switch} } \end{aligned} \end{gather} $$

Designing Ground

CM Rejection

定义

$$ \begin{gather} \begin{aligned} CMRR &= | \frac{ A_{dm} }{ A_{cm} }| \end{aligned} \end{gather} $$

Influence on Error

RTI

$$ \begin{gather} \begin{aligned} V_o &= A_{cm} V_{cm} + A_{dm} V_{diff} \\ &= A_{dm} \Big( V_{diff} + V_{cm} \frac{ A_{cm} }{ A_{dm} }\Big) \\ &= A_{dm} (V_{diff} + \frac{ V_{cm} }{ CMRR }) \\ RTI &= \frac{ V_{cm} }{ CMRR } \end{aligned} \end{gather} $$

等效电路和分析

$$ \begin{gather} \begin{aligned} V_o &= A(V(+) - V(-)) \\ &= A(V(+) - (V_o \pm \frac{ V_{CM} }{ CMRR })) \\ \frac{ V_o }{ V(+) } &= \frac{ A \Big[ 1 + \dfrac{ 1 }{ CMRR } \Big] }{ 1 + A } \\ & \approx 1 + \frac{ 1 }{ CMRR } \end{aligned} \end{gather} $$

  • $CMRR$越大,Error越小

CMRR of Differential Amplifier with Imbalanced Resistors

Gains

$$ \begin{gather} \begin{aligned} V_o &= \frac{ V_{CM} - \dfrac{ V_{diff} }{ 2 } - \dfrac{ R_2 }{ R_1 + R_2 } (V_{CM} + \dfrac{ V_{diff} }{ 2 })}{ R_1 } R_2(1 - \varepsilon) + \frac{ R_2 }{ R_1 +R_2 } (V_{CM} - \frac{ V_{diff} }{ 2 }) \\ &= A_{dm} V_{dm}+ A_{cm} V_{cm} \\ A_{diff} &= \frac{ R_2 }{ R_1 } \Big( 1 - \frac{ R_1 + 2R_2 }{R_1 + R_2 } \times \frac{ \varepsilon }{ 2 }\Big) \\ A_{dm} &= \frac{ R_2 }{ R_1 + R_2 } \varepsilon \end{aligned} \end{gather} $$

CMRR when $\varepsilon$ is Small

$$ \begin{gather} \begin{aligned} CMR(dB) &= 20 l \Big[ \frac{ 1 + \dfrac{ R_2 }{ R_1 } }{ \varepsilon} \Big] \end{aligned} \end{gather} $$

Instrumentaiton Amplifier

电路

  • 红色部分是Buffer Stage

  • 第二部分是Unity Gain Amplifier

  • 电流$I$方向是3-1-2-4, 因此$V_3 - V_1 = V_4 - V_2$

电流/电压 分析

$$ \begin{gather} \begin{aligned} I &= \frac{ V_3 - V_4 }{ 2R_a + R_b } \\ &= \frac{ V_1 - V_2 }{ R_b } \\ V_o &= V_3 - V_4 \\ &= (V_1 - V_2) \frac{ 2R_a + R_b }{ R_b } \end{aligned} \end{gather} $$

Gain & CMRR Considering $\varepsilon$

$$ \begin{gather} \begin{aligned} A_{diff} &= \frac{ 2R_a + R_b }{ R_b } \\ A_{cm} &= \frac{ \varepsilon }{ 2 } \\ CMRR &= \frac{ 4R_a +2R_b }{ \varepsilon R_b } \end{aligned} \end{gather} $$

IA Application (ECG)

测量方法

Category Concept
LL-RA
LL-LA
LA-RA

Difference Amplifier Problem

Circuit

$$ \begin{gather} \begin{aligned} \Delta &\ll R_1 \\ Sense &= O/P \\ &= \Big( In(+) - In(-) \Big) + Ref \\ G &= 1 \\ Ref &= 0V \end{aligned} \end{gather} $$

DM Gain

  • $In(+) = V_{diff} = -In(-)$

$$ \begin{gather} \begin{aligned} A_{dm} &\approx 1 \end{aligned} \end{gather} $$

$$ \begin{gather} \begin{aligned} V_p &= V_n \\ (Ref - In(+)) \frac{ R_1 }{ R_1 + R_1 + \Delta } &= (Sense - In(-)) \frac{ R_1 }{ R1 + R_1 - \Delta } \\ V_{diff} &= Sense - Ref \end{aligned} \end{gather} $$

CM Gain

  • $In(+) = In(-) = V_{CM}$

$$ \begin{gather} \begin{aligned} (Ref- V_{CM}) \frac{ R_1 }{ 2R_1 + \Delta} &= (Sense -V_{CM}) \frac{ R_1 }{ 2R_1 - \Delta } \\ (Ref -V_{CM}) (2R_1 - \Delta) &= (Sense - V_{CM}) (2R_1 + \Delta)) \\ A_{CM} &= \frac{ Sense - Ref }{ V_{CM} } \\ & \approx \frac{ \Delta }{ R_1 } \end{aligned} \end{gather} $$

CMRR

$$ \begin{gather} \begin{aligned} CMMR &= \frac{ R_1 }{ \Delta } \end{aligned} \end{gather} $$

Noise & Opamp

SNR & NEB

  • Signal to Noise Ratio (SNR) and Noise Equivalent Bandwidth (NEB)

$$ \begin{gather} \begin{aligned} SNR &= 20 \times lg( \frac{ V_s(rms) }{ V_n(rms) }) \end{aligned} \end{gather} $$

$$ \begin{gather} \begin{aligned} NEB &= n \times \frac{ GBW }{ Noise \ Gain } \end{aligned} \end{gather} $$

  • n is Brick-Wall Factor

Opamp Noise Model

Circuit

  • $i_n, e_n$ are Spectral Density

White Noise Passing LPF

RMS Input Noise

Formulas

  • $R_1 || R_2 = R_3$

$$ \begin{gather} \begin{aligned} E_{R1-R2} &= E_{RP} = \sqrt{ 4kT \times 1.57 f_H \times (R_1 || R_2)} \\ E_{R3} &= E_{RP} \\ E_{nn} &= i_n (R_1 || R_2) \sqrt{ 1.57 f_H } \\ E_{np} &= E_{nn} \\ E_{n} &= e_n \sqrt{ 1.57 f_H } \\ E_{ni} &= \sqrt{ E_{R1 -R2}^2 + E_{R3}^2 + E_{nn}^2 + E_{np}^2 + E_n^2} \\ &= \sqrt{ 1.57 f_H} \sqrt{ 8kTR_P + 2R_P^2 i_n^2 + e_n^2 } \end{aligned} \end{gather} $$

  • $E_{ni}$ refers to the non-inverting input

$$ \begin{gather} \begin{aligned} E_{noise} &= E_{ni} (1 + \frac{ R_2 }{ R_1 }) \end{aligned} \end{gather} $$

Relationship in Graph

Appendix

CheckList

Category Concept
什么情况下使用Bias 或 Offset Impedance (Very) Unbalanced: Bias; Impedance Matched: Offset
Figure of Merit A function of all significant contributions of the components to the total system error, which changes monotonically with the overall error
Shielding Covering it with Metal
twisted pair 减少Differential Noise
Supply Decoupling 对于大电流电路端,需要单独使用宽轨线进行布线, 防止磁场干扰、过热、噪声问题
Ground Bounce 多个芯片共享参考地,产生回路电流干扰寄生电容、电感
Supply Decoupling 在供电引脚之间防止无极性电容(去耦电容), 隔离噪声干扰
Cold End 连接LoadGround的电路
Hot End 连接PowerInput Signal的电路
Thermocouple 两种不同材料的导线连在一起,当有$\Delta T$时,就会产生电动势
White Noise Noise that has flat Spectral Density
3 Sources for Noise 两个Voltage Inputs, 每个输入端的Current Noise
2 Reasons for Noise Recombination & Generation of electrons in semiconductors; Thermal Agitation of electrons, $E_r = \sqrt{4 R k T \Delta f}$, $\Delta f$ is bandwidth
Noise Equivalent Bandwidth 在指定带宽内,能产生和实际噪声功率相等的均匀白噪声所对应的等效宽带
Gain-Bandwdith The point of Unitary-Gain, 能够提供一定增益的最大频率带宽

公式

  1. Dynamic Range (DR)

$$ \begin{gather} \begin{aligned} DR &= 20 \times lg( \frac{ V_{max} }{ V_{min} }) \\ &= (6.02N + 1.76) dB \end{aligned} \end{gather} $$

  1. Energy Spectral Density

$$ \begin{gather} \begin{aligned} V &= \sqrt{ E_n \Delta f } \end{aligned} \end{gather} $$

Licensed under CC BY-NC-SA 4.0
comments powered by Disqus
Built with Hugo
Theme Stack designed by Jimmy